ACEM Primary
Acid-base and body fluid physiology

Acid-base and body fluid physiology

Body Fluids 

Regulation of ECF composition 

Defence of Tonicity 

  • Vasopressin secretion and thirst mechanism: 
    • Increased osmolality ECF ->  thirst + vasopressin release ->  increased water intake and retention in kidneys ->  dilution (negative feedback loop) 
    • Normal osmolality = 280-295 mosm/kg  

Defence of Volume  

  • Determined by amount of osmotically active solutes = Na+  
  • Mechanisms: 
    • Na+  
      • ECF volume decreased ->  BP falls ->  GFR falls ->  reduced Na+ filtered 
      • Aldosterone ->  increased tubular reabsorption of Na+  
    • Water  
      • Hypovolaemia ->  angiotensin II ->  secretion of ADH + aldosterone  
      • Secretion of BNP/ANP ->  natriuresis and diuresis  

Specific Ionic Composition 

  • Ca2+ feedback to parathyroids and calcitonin- secreting cells  
  • Mg+ feedback incompletely understood  
  • Na+ / K+ also dependent on H+ and pH  

Defence of H+  

  • Buffer systems: Plasma proteins, Hb and carbonic acid- bicarbonate  
    • Blood 
      • H2CO3 -> H+ + HCO3- 
      • HProt -> H+ + Prot – 
      • HHb -> H+ + Hb- 
  • Interstitial fluid 
    • H2CO3 -> H+ + HCO3- 
  • Intracellular fluid  
    • HProt -> H+ + Prot – 
    • H2PO4- -> H+ +HPO42- 
  • Henderson – Hasselbalch Equation: pH = pK + log [A-]/[HA] 
  • Most effective buffers are those with pK close to pH in which they operate 

Interpreting ABG

  1. Determine adequacy of oxygenation (normal PO2 = 80- 100 mmHg) 
  2. Determine pH status  
    • <7.35 defines acidaemia
    • >7.45 defines alkalaemia  
  3. Determine respiratory component – normal PCO2 35- 45 mmHg  
  4. Determine metabolic component – normal HCO3- 22-26 mmol/L
  5. Assess level of compensation
Respiratory acidosis  Respiratory alkalosis  Metabolic acidosis  Metabolic alkalosis 
Rise in arterial PCO2   
3 mechanisms: 
1. Presence of excess CO2 in inspired gas
2. Decreased alveolar ventilation 
– Central respiratory depression 
– Neuromuscular disorders 
– Chest wall defects 
– Airway obstruction 
– Inadequate mechanical ventilation  
3. Increased production CO2  
– Malignant hyperthermia 
– Thyroid storm 
– Sepsis  
– Liver failure   
Drop in arterial PCO2
Mechanisms: 
Hyperventilation
– Head injury 
-Stroke 
– Anxiety  
– Salicylate intoxication 
Increase in acids or loss of base   
Classification: 
High anion gap (gain of acid) 
– Lactate 
– Toxins such as methanol, metformin, paraldehyde, propylene glycol, ethylene glycol  
– Ketones  
– Renal failure   
Normal anion gap (loss of base)  
– Addison’s 
– GI causes such as diarrhoea, vomiting, high output fistula 
– Renal tubular acidosis   
Compensation:  
Hyperventilation to decrease arterial PCO2 and increase pH.  
Winter’s formula to calculate expected CO2 = 1.5 x HCO3- + 8  
Rise in plasma bicarbonate level  
Mechanisms: 
– Gain of alkali  
– Exogenous source such as NaHCO3 infusion 
– Loss of H+  
– Via kidneys due to diuretics  
– Via GIT due to vomiting   
Compensation: 
Hypoventilation to increase arterial PCO2 and decrease pH.  
Expected CO2 = 0.7 x HCO3- + 20 +/- 5 

Renin-Angiotensin System 

  • Angiotensinogen = made by liver 
    • Increased level by glucocorticoid, thyroid hormone, oestrogen, cytokines and angiotensin II 
  • Renin = acid protease secreted by juxtaglomerular cells of kidney (t ½ 80 mins) 
    • Regulation  
      • Stimulatory – increased sympathetic activity in renal nerves, increased circulating catecholamines, prostaglandins  
      • Inhibitory – Increased Na+/Cl- reabsorption across macular densa, increased afferent arteriolar pressure, angiotensin II and ADH  
    • Conditions which increase renin secretion – Na+ depletion, diuretics, hypotension/ hypovolaemia, cardiac failure, cirrhosis, constriction of renal artery or aorta, psychologic stimuli  
  • Angiotensin converting enzyme (ACE) = in lungs, also inactivates bradykinin  
  • Angiotensin II = t ½ 1-2 mins 
    • Actions: 
      • Potent vasoconstrictor  
      • Increase NE release from post ganglionic sympathetic neurons + potentiates pressor effect via area prostrema  
      • Stimulates aldosterone secretion from adrenal cortex ->  Na+/H2O retention 
      • Stimulates ADH secretion from pituitary ->  H2O retention 
      • Contracts mesangial cells to reduced eGFR  
      • Decreases sensitivity to baroreflex 
      • Dipsogenic effect = Increases thirst via subfornical organ (SFO) and organum vasculosum of lamina terminalis (OVLT) 
    • Two receptors:  
      • AT1 (G protein coupled) – activity increases cytosolic free Ca2+ ->  tyrosine kinase activation  
        • Vascular smooth muscle – R downregulated by A II activity  
        • Adrenal cortex – R upregulated (more sensitive)  
      • AT2 – coded on X chromosome – (G protein coupled) – activity opens K+ channels/ increase NO and cGMP (brain) 
    • Reduced activity in cirrhosis/ hyponatraemia  
    • Does not penetrate BBB 
  • Tissue RAAS systems = eyes, exocrine pancreas, ovary/testis, heart, adrenal cortex, intermediate lobes of pituitary and brain (contribute little to circulating renin pool) 
  • Pharmacologic manipulation 
    • PG inhibitors/ BB (indomethacin, propranolol) reduce renin secretion 
    • Renin inhibitor (enalkiren) stop production angiotensin I 
    • ACE inhibitors and ARBs  
  • Goldblatt hypertension = constriction of renal artery causing increased renin secretion  

Natriuretic Factors 

  • Myocardial cells secrete ANP/BNP when stretched  
  • NaCl intake increases/ ECF expanded ->  secretory granules increase ->  release substances causing natriuresis ->  lower blood pressure  
  • Actions =  via NPR A and NPR B receptors  
    • Dilate afferent arterioles and relax mesangial cells = increase eGFR = Na+ excretion  
    • Inhibit Na+ reabs in tubules  
    • Increase capillary permeability to extravasate fluid  
    • Relax vascular smooth muscle  
    • Inhibit renin and counteract pressors/ Angiotensin II  
  • Types: 
    • Atrial natriuretic peptide (ANP) 
    • Brain natriuretic peptide (BNP) 
      • Ventricles, brain  
    • C-type natriuretic peptide (CNP) 
      • Brain, pituitary, kidneys and vascular endothelium  
      • Primarily paracrine mediator

Body Fluids 

Marrow: 

  • Haematopoiesis = formation of RBC/WBC/PLT 
    • Occurs in bone marrow for adults (red marrow – active, yellow – inactive) 
    • Extramedullary (liver and spleen) in foetus or disease bone marrow states  
  • Haemopoietic stem cells (HSC) = progenitor to blood cells  
  • Proliferation depends on stem cell factor (SCF) = EPO, colony stimulating factors (GM-CSF – granulocyte- macrophage) + IL-1,6,3 
Ganong et al.

WCC

Granulocytes (polymorphonucleocytes = PMN)

  • Contain cytoplasmic granules with active substances: 
  • Neutrophils = neutrophilic granules 
    • t ½ 6 hours  
    • Produce 100 billion neutrophils daily  
    • Involved inflammatory response = presence of bacteria ->  chemotaxis via chemokines (leukotrienes, C5a, polypeptides) ->  opsonization of bacteria (tasty opsonins – IgG + complement proteins) ->  bind to neutrophil ->  phagocytosis ->  exocytosis of bacteria + granules containing antimicrobial proteins (defensins a/b) + NADPH oxidase for respiratory burst ->  bactericidal  
  • Eosinophils = granules dye acidic stain  
    • Similar diapedesis and chemotaxis  
    • Abundant in mucosa of GI/ urinary and respiratory tracts  
    • Increased in asthma 
  • Basophils  = basophilic granules 
    • Contain histamine and heparin – released when activated by histamine releasing factor from T lymphocytes  
    • Immediate hypersensitivity reactions (urticaria ->  anaphylaxis)

Mast cells

  • Heavily granulated, wandering cells  
  • Found in areas of rich connective tissue/ beneath epithelium 
  • Granules contact heparin, histamine, proteases  
  • IgE R ->  involved in responses initiated by IgE and IgG, such as parasitic infections  
  • Release TNF- a ->  Ab independent mechanism = natural immunity  
  • Marked mast cell degranulation ->  anaphylaxis  

Lymphocytes

  • Large round nuclei + scanty cytoplasm  
  • Most formed in lymph nodes/ thymus/ spleen  
  • 2% body lymphocytes in blood stream, rest in lymphoid organs  
  • T cells: Mature in thymus  
    • Cytotoxic (CD8) 
    • Helper (CD4) = TH1 – cellular immunity via IL-2 and IFN y, TH2 – humoral immunity via IL-4/5 
    • Memory – can produce accelerated response to second exposure  
  • B cells: Mature in liver/ marrow  
    • Plasma  = produce Ab 
    • Memory 
  • Natural killer cells (NK)

Monocytes

  • Abundant agranular cytoplasm + kidney shaped nuclei 
  • In blood = life span 72 hours  
  • Enter tissues = macrophages, life span ~ 3months  
    • Kupffer cells (liver) 
    • Pulmonary alveolar macrophage 
    • Microglia of brain  
  • “Reticular endothelial system” 
  • Activated by lymphokines from T lymphocytes ->  chemotaxis ->  engulf bacteria  

RBC

  • Biconcave discs, carry haemoglobin  
  • Life span 120 days 
  • 3 x 1013 RBC (900g Hb) in circulation  
  • Regulated by EPO from kidney  
  • Morphology:  
    • Spectrin + ankyrin protein make up membrane skeleton  
    • Mean corpuscular volume (MCV) normal ~ 90 
      • >95fL = macrocytes and <80fL = microcytes  
    • Mean corpuscular haemoglobin (MCH) normal ~30 
      • <25g/dL = hypochromic  
  • Osmotic fragility: shrink in solutions with greater osmotic pressure than plasma  
    • Low osmotic pressure ->  swell  ->  spherical shape ->  lose Hb (haemolysis) 
    • Hereditary spherocytosis = spherocytic cells, haemolyse more readily in hypotonic solutions, removed by spleen ~ hereditary haemolytic anaemia 
    • Glucose 6 phosphate dehydrogenase (G6PD) deficiency ->  increased haemolysis  
      •  G6PD enzyme catalyses initial step oxidation of glucose to form NADPH, required for maintaining cell fragility  
  • Contain haemoglobin molecule = 4 subunits, haeme conjugated to polypeptide globin  
    • HbA (adult) = 2 polypeptide chains each with haeme, (a2b2) 
    • HbA2 = 2.5%, contain a2d2 
    • HbA1C = glycated Hb, glucose attached to terminal valine in each b chain 
    • HbF = foetal, (a2g2) ->  oxygen content at certain PO2 is greater than HbA, as it binds 2,3-BPG less avidly ->  allows maternal-foetal circulation 
  • Reactions of haemoglobin  
    • Oxygen (affinity shifted by pH, temperature, 2,3-BPG) 
    • Drugs/ oxidizing agents ->  methaemoglobin  
    • CO 
  • Catabolism of Hb ->  haeme + globin 
    • Haem – biliverdin – bilirubin – excreted in bile 
    • Iron is reused  
    • Exposure to UV light converts BR to lumirubin (shorter t ½) thus phototherapy can be used to treat infants with jaundice due to haemolysis

Platelets

  • Anuclear granulated bodies  
  • t ½ 4 days 
  • Formed from megakaryocytes (giant cells in marrow) cytoplasm 
  • 60-75% in circulation, remaining in spleen 
  • Splenectomy = increase platelet count  
  • Membrane have R for collagen, ADP, vWF and fibrinogen  
  • Cytoplasm contains two granule types: 
    • Dense = serotonin, ADP, adenine nucleotides ->  for platelet activation 
      • Three kinds ADP R – P2Y1, P2Y2, P2X1  
    • a= clotting factors, PDGF  
  • Vessel wall injury ->  PLT adhere to exposed collagen + vWF ->  granule release + PAF from N/monocytes = platelet aggregation  
  • Regulated via colony stimulating factors for megakaryocytes + thrombopoietin

Immunity: 

  • Innate = R bind to common bacteria to activate defense mechanisms 
    • Neutrophils, macrophages and natural killer cells  
    • Toll- like receptors – eg. TLR 4 binds bacterial lipopolysaccharide + protein CD14 initiates transcription for proteins needed for innate response   
  • Acquired = Lymphocytes activated by Ag, form clones that produce Ab. 2 components: 
    • Humoral – circulating Ab ->  bacterial infection  
    • Cellular – mediated by T lymphocytes ->  find cells which display certain antigen, kill via perforins ->  virus/fungi/few bacteria, delayed allergic reaction, transplant rejection
  • Cytokines = hormone like molecules which regulate immune responses in paracrine fashion  
  • Complement system = various plasma enzymes, include >30 proteins synthesised in liver  
    • Function in both innate and adaptive immunity  
    • Three pathways of enzymes to activate: 
      • Classic via immune complexes  
      • Mannose binding lectin pathway 
      • Alternative/ properdin via contact with intruder  
    • Functions:  
      • Opsonisation, chemotaxis 
      • Cell lysis via insertion of MAC (membrane attack complex) -> makes cell permeable to water/ ions and leads to cell lysis  
      • Activate B cells  
      • Help dispose of waste products after apoptosis 
    • Specific proteins: 
      • C5a, C3a, C4a mediate chemotaxis, facilitate release of histamines from mast cells  
      • C3b is an opsonin, forms ‘MAC’ 
  • Autoimmunity = failed processes which eliminate Ab to self Ag  
    • B cell mediated/ T cell mediated 
    • Organ specific/ systemic  
      • Type 1 DM (Ab against pancreatic islet cells) 
      • Myasthenia gravis (Ab against nicotinic cholinergic R) 
      • MS (Ab against myelin protein) 
      • Graves (Ab against TSH R) 
    • Molecular mimicry = production of Ab against invader Ag which cross react with normal body constituents  
      • Rheumatic fever (portion of cardiac myosin resembles portion of streptococcal M protein ->  Ab damage heart) 
    • Bystander effect = inflammation sensitizes neighbourhood T cells, which should otherwise be inactivated  
  • Tissue transplantation = rejection occurs via T cells  
    • Azathioprine – kills rapidly dividing cells ~ kills T cells 
    • Glucocorticoids – inhibit IL-2 thus T cell proliferation 
    • Cyclosporin/ tacrolimus – prevent dephosphorylation of NF-AT  
      • Activation of T cell ->  increased intracellular calcium ->  activates calcineurin via calmodulin ->  dephosphorylates transcription factor NF-AT ->  increases gene activity for IL-2 ->  stimulatory cytokine 
  • Acquired Immunodeficiency Syndrome (AIDS) caused by Human Immunodeficiency virus (HIV) = virus destroys CD4 cells ->  failure to proliferate CD8 and B cells ->  loss of immune function  

Plasma  

  • Contain proteins (albumin, globulin and fibrinogen fractions) 
  • Functions: 
    • Osmotic pressure  
    • Buffering capacity of blood 
  • Hypoproteinaemia = prolonged starvation, malnutrition, liver disease and nephrotic syndrome ->  oedema  

Lymph 

  • Tissue fluid enters lymphatic vessels  
  • Drains into venous blood via thoracic and right lymphatic ducts  

Last Updated on September 24, 2021 by Andrew Crofton

,